Chaotic Prediction for Traffic Flow of Improved BP Neural Network
نویسندگان
چکیده
Abstract A prediction algorithm for traffic flow prediction of BP neural based on Differential Evolution (DE) is proposed to overcome the problems such as long computing time and easy to fall into local minimum by combing DE and neural network. In the algorithm, DE is used to optimize the thresholds and weights of BP neural network, and the BP neural network is used to search for the optimal solution. The efficiency of the proposed prediction method is tested by the simulation of two typical chaotic time series and real traffic flow. The simulation results show that the proposed method has higher precision compared with the traditional BP neural network, so prove it is feasible and effective in the practical prediction of traffic flow.
منابع مشابه
Multi-step Prediction Algorithm of Traffic Flow Chaotic Time Series Based on Volterra Neural Network
The accurate traffic flow time series prediction is the prerequisite for achieving traffic flow inducible system. Aiming at the issue about multi-step prediction traffic flow chaotic time series, the traffic flow Volterra Neural Network (VNN) rapid learning algorithm is proposed. Combing with the chaos theory and the Volterra functional analysis, method of the truncation order and the truncatio...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملDynamic Network Traffic Flow Prediction Model based on Modified Quantum-Behaved Particle Swarm Optimization
This paper aims at effectively predicting the dynamic network traffic flow based on quantum-behaved particle swarm optimization algorithm. Firstly, the dynamic network traffic flow prediction problem is analyzed through formal description. Secondly, the structure of the network traffic flow prediction model is given. In this structure, Users can used a computer to start the traffic flow predict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013